
!

LESSON 8 ROBOT PROJECT-FLY ELEPHANT GAME! 

Lesson Overview                                                                                                                               

Students will practice using ultrasonic module to make a new game - fly elephant game. 

Lesson Target                                                                                                                                     

1. Practice the use of variable data and ultrasonic sensor.  
2. Learn the knowledge of coding block broadcast, costume, random number, wait until.  
3. Practice the ability of finding out problem and solving problem during coding. 

Lesson Tag                                                                                                                                         

GRADE LEVEL               SUBJECTS                                DIFFICULTY            DURATION            GROUP 
Elementary, middle         STEAM, computer science         Beginner                 180 mins              1-2 students  
                                      Math  

Supplies                                                                                                                                                                             

Robot                             Accessories                             Other Material                                Tools Used 
WeeeBot Kit                   USB cable                               PC with WeeeCode software 
                                                                                      USB port required;    
                                                                                                                                                                          

Lesson Outline                                                                                                                                                                                                                                                                 
INTRO: Show the picture of flappy bird game, or let students play the flappy bird game. Lead students 
summarize objects in this game and functions. Introduce students about coding block broadcast, costume, 
random number, wait until. (60 mins) 

CREATE: Create a fly elephant game. (70 mins) 

PLAY: Each group tests, then records learnings from their invention. Students explore how their invention 
works, plus the coding concepts behind it. (30 mins) 

REMIX: Students will customize and enhance their inventions to create fly elephant game. (20 mins)  

! /!1 12

WEEEMAKE



!

Routine                                                                                                                                               

1. INTRODUCE FLY ELEPHANT GAME AND SUMMARIZE FOR EACH OBJECT. 

Objects in fly elephant game 

Show picture of flappy bird game to students, or let students plan flappy bird game, and then share and 
summarize the function of each object. 

2. HARDWARE AND SOFTWARE INTRODUCTION 

Coding block costume 

In flappy bird game, the bird will flap wings during fly. This animation is formed by several movements, 
combine those movements we can see an action animation. One sprite’s different movements are called 
costume, in WeeeCode, there are two coding blocks to control the change of costume in category “Looks”.  

! : every costume has its name, please check in costume list. This coding 
block will switch costume to the assigned movement. 

!  : sprite will switch costume in turns of costume list.  

Button 1. Will be enlarged when touched by mouse  pointer 

2. Once be clicked, game begins. 

Waterpipe 1. Appear from right of screen and moving to left. 

Bird 1. Be controlled moving up and down to avoid obstacle

2. Score when avoided tube, game over when touched tube. 

! /!2 12

WEEEMAKE

Exercise:  
1. Click “add sprite”, open sprite library and put mouse pointer on different sprite, we can see all costume 

of the pointed sprite.  
2. Select “Jaime Walking”, click “Costumes” and we can find all 5 costume of this sprite.  
3. Code as below, observe. 



!

 
 

 

Result: sprite will walk on stage, when touch the edge of stage the sprite will turn upside down. The reason 
why it happened is because the rotation mode of sprite is “all around” instead of “left-right”. Change the 
setting and sprite will walk back and forth.  

Coding block broadcast 

In WeeeCode, broadcast is mainly used as a command between sprites. Generally, we use broadcast 
command in below three ways: 
1. One to one broadcast, means sprite 1 use broadcast to control sprite 2.  
2. One to a group broadcast, means sprite 1 use broadcast to control multiple other sprites at the same 

time.  
3. A group to one broadcast, means multiple sprites can send broadcast to control sprite 1.  

Coding block broadcast is very important to coordinate multiple sprites.  

In category “Events”, we can see below three coding block related to broadcast: 

1. ! : broadcast a message to other sprite as a trigger, wait until other 
sprites finish the preset task, and then continue.  

! /!3 12

WEEEEMAKE



!

2. ! : broadcast a message to other sprite, and then continue.  

3. ! : work with broadcast command, once receive message it will be a start 
event.  

 

 

Result: Once running program, “Breakdancer1” will broadcast message 1 and wait, “AZ Hip-Hop” will start 
switch costume, once all 13 costumes finished, “Breakdancer1” will switch its costumes.  

Result: on the dropbox of coding block “broadcast” and “broadcast…and wait”, we can create “New 
Message”. Please pay attention to mark the same name on coding block “When I receive…”.  

! /!4 12

WEEEEMAKE

Exercise:  
1. Add sprites “AZ Hip-Hop” and “Breakdancer1”.  
2. Code as below. 

Exercise:  
What if change the code of “Breakdancer1” from “broadcast messageX and wait” to 
“broadcast messageX”?



!

Coding block random number 

In category “Operators”, we can find the coding block random number. In this coding block, two blanks can 
be modified, we should fill in numbers in those two blanks to get a range. This coding block will pick random 
number in the range we set.  
 
 

Result: It will keep generating number between 1 to 10 (including 1 and 10).  

Coding block wait until… 

In category “Control”, we can find a coding block “wait until …”. The function of this coding block is: wait until 
the condition in blank is satisfied (the blank here is a decision box), running codes after this command; 
otherwise, program will be pending. Generally, this coding block is used when a sprite must wait for a certain 
event. 
 
 

Result: Running codes, press button on mainboard ELF, and you will see below result on stage.  

! /!5 12

WEEEEMAKE

Exercise:  
Write below codes and observe the result. 

Exercise:  
1. Connect USB cable, restore online firmware, robot enter online control mode.  
2. Write codes below and observe result. 



!

 

3. WRITE CODE FOR FLY ELEPHANT GAME 

Set backdrop and sprite 

1. Click “Add backdrop” and select “blue sky” as background. 
(You can choose other backdrop.) 

2. We already have default sprite “Elephant2”, add sprite 
“Waterpipe1” and “Button2” as below. (Sprite position may 
be different.) 

Code for sprite “Button2” 

1. Set the initial position of “Button2”, and then write codes for its animation. The result should be: when it’s 
touched by mouse pointer, it will be enlarged; when mouse pointer left, it will convert back into normal 
size.  

2. Write codes for “Button2”, the result should be: when it’s clicked, it will vanished and game starts. 

! /!6 12

WEEEEMAKE

Button



!

Result: Running codes, when we click “Button2”, the button will be hided and broadcast a message to other 
sprites, game starts. However, when we click “Button2” and then running codes all over again, “Button2” is 
disappeared. It is because that we don’t show this sprite again after hiding it. The optimized program as 
below.  

Code for sprite “Elephant2” 

1. Set the initial position and size of sprite “Elephant2”, write codes for it as below. 

Result: Running codes, “Elephant2” move to the left of stage. Students use hand or other object to control the 
distance between ultrasonic sensor, and control “Elephant2” move up and down. The distance measured by 
ultrasonic is longer, the “Elephant2” fly higher.  

! /!7 12

WEEEEMAKE



!

We find a problem, that when the distance value of ultrasonic is over 160, “Elephant2” will exceed the top of 
stage. So we need to set a limit of the maximum value of variable data Elephant y axis as below. 

Tips:  
1. The size of “Elephant2” should be set to 50%, or it’s too large to avoid water pipe.  
2. We set the variable data “Elephant y axis” multiple 10 times, to transfer the distance value from ultrasonic 
sensor to millimeter. This is enlarge the variable range; Then we minus 180 to convert the detected value to 
coordinate system value, means when ultrasonic sensor defects distance as 0, elephant should be in the 
bottom of stage, y axis should be -180.  
 
Code for sprite “Waterpipe1”.  

1. Set initial value of variable data “score”, 
“speed” of water pipe, and “game over 
status”. Set the initial position and size of 
“Waterpipe1”.   

Tips:  
a. The initial value of variable data can be write 

into any sprite. 
b. “Waterpipe1” is moving from right to left, 

means x axis is decreasing, so speed value 
is negative number.  

c. Use variable data “game over status” to 

! /!8 12

WEEEEMAKE



!

stands for game status. 0 means game running, 1 means game over.  
d. Initial y axis -180~80 is the highest and lowest position of  enlarged “Waterpipe1”. 
  
2. Code for “Waterpipe1” movement: when 

received broadcast message1, “Waterpipe1” 
starts moving. Before game over, “Waterpipe1” 
will move to left side at speed -4. Once 
“Waterpipe1” reaches to the left wall of stage, it 
will appear on the right side and start moving to 
the left again, player will get 1 score. 

Tips:  We know the coordinate system in WeeeCode 
is -240~240 for x axis, but here we cannot set -240 
as the decision value of x axis. The axis of a sprite is 
the center point, however, “Waterpipe1” has width, it 
should stop when the edge of sprite touch the wall 
of stage. In this circumstance, “Waterpipe1” cannot 
move to -240.  

3. Code for variable data “game over status”. If “Elephant2” touched “Waterpipe1”, game should stop and be 
game over. Revise program for sprite “Elephant2” as below: 

! /!9 12

WEEEEMAKE



!

Result: Running codes, “Elephant2” will follow the ultrasonic sensor value moving up and down. Each time 
when “Elephant2” avoided “Waterpipe1”, player get 1 score; Once “Elephant2” touched “Waterpipe1”, 
“Elephant2” will be hidden, “Waterpipe1” will stop moving, program stops.  

However, we find one problem. “Elephant2” can move up and down before we click “Button2”, because initial 
value of “game over status” is set when running codes instead of clicked button. To solve this problem, we 
should remove the initial value setting of “game over status” in sprite “Waterpipe1” and add into “Button2” as 
below. 

Tips:  
a. This program is to add a condition before “Elephant2” moving. If the variable data “game over status” is 0, 

“Elephant2” should move according to ultrasonic sensor value; otherwise “Elephant2” shouldn’t move.  
b. In “Elephant2” program, we should add “Wait…secs” before “forever” and “wait until…”, or program will 

start checking the condition in the beginning, when condition can never be satisfied.   

Here you go the final program of “Waterpipe1”.  

! /!10 12

WEEEEMAKE



!

4. REMIX 

Make animation for game over, add acceleration for “Waterpipe1” 

1. Game over animation: when “Elephant2” touch “Waterpipe1”, it will make sounds, move up, drop down to 
the bottom of stage, hide, show again in the center of stage, and then say score.  

To achieve this animation, we should revise program in sprite “Elephant2” as below.  

2. “Waterpipe1” acceleration animation: when score is higher, the speed of “Waterpipe1” will be faster. Revise 
“Waterpipe” program as below:  

Tips: Encourage students use different way to achieve game result.  

! /!11 12

WEEEEMAKE



!

! /!12 12

WEEEEMAKE


